DSC Blog

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Archives
    Archives Contains a list of blog posts that were created previously.
Subscribe to this list via RSS Blog posts tagged in Donskov Strength and Conditioning

Posted by on in Programming

What makes a great skater?  This is a complex question to answer. The truth is, no two strides are the same and there is no perfect answer.  Skating, like playing the guitar, is a skill.  There are plenty of players playing at high levels that have unorthodox stride signatures.  The game of hockey is complex, and although skating comes at a premium, one also must consider hockey sense, technical, and tactical tendencies as all may lead to efficiency on the ice. 

...
Last modified on

Strength matters in ice hockey!  Here’s why.  The ice is a near frictionless environment.  This is a distinct disadvantage during acceleration when the player must overcome inertia and accelerate.  In order to be effective, the player must possess large amounts of strength in order to create a large propulsive angle between the ice and skate.  In addition, large step widths and single force peaks are reliant on both strength and coordination.   Recent research has correlated single leg broad jump (strength reliant) with on-ice acceleration abilities of competitive hockey players.  Take home message:  get strong!

...
Last modified on

Body composition matters in ice hockey.  Here’s why!  One of the most important physical abilities needed to be an effective player is acceleration or the ability to win 10-15’ puck races. Excess body mass negatively affects acceleration.  To see why, a basic understanding of physics is needed.  Newton’s second law states that force is equal to the product of mass and acceleration (F=ma).  A simple manipulation of this formula allows us to solve for acceleration leading us to the conclusion that acceleration is equal to force/ body mass.  Larger body mass leads to a decrease in acceleration.  It’s important for players to focus on foods that promote the growth and maintenance of lean mass throughout the course of the off-season.  Poor body composition leads to decrease efficiency on the ice.

...
Last modified on

#OneDayBetter

...
Last modified on

Earn It:

...
Last modified on

Positive Attitude:

...
Last modified on

Be an “Everydayer”:

...
Last modified on

The good old days --- a time when hard work, commitment, discipline and positive attitude were expected, not rewarded.  Failure was not final and earning meant sacrifice. These lessons have stood the test of time.  Growing up in Canada, I never played AAA hockey, I got cut from most of the teams I tried out for.  I knew at an early age that hard work, desire, determination and discipline were the keys to success.  My father never responded by formulating a new league, moving across town, getting involved in “politics” or buying me something to ease my self pitied state. By doing so, he taught me a very valuable lesson that would pay off later in life:  In the real world NOT EVERYONE GETS A TROPHY. 

...
Last modified on

In my opinion, it’s extremely important to understand the tools of the trade for various sports and their requisite performance underpinnings.  In the world of hockey, perhaps no tool is as important as a player’s choice in both skates and sticks.  The hockey skate consists of a hard-outer shell, a rigid toe box to withstand the velocity of flying pucks/sticks, a padded tongue, which may, or may not be manipulated for increased range of motion, an Achilles guard, heel counter and skate blade.  Players traditionally choose a skate that provides the most comfort while ensuring performance needs.  The balance of this so called “performance teeter-totter” typically resides in a personal choice between rigidity and range of motion (frontal plane stiffness and sagittal plane mobility).  For example, defensemen may choose a stiffer boot due to the fact that backward skating (C-Cut) does not have a swing phase only a stance (foot is on the ice the whole time).  In addition the trunk segmental angle (relative to the horizontal axis) in forward skating is significantly less than backward skating which indicates that players lean their bodies significantly forward during forward skating and not nearly as much in skating backwards [1].  More can be found here.  This choice has direct impact on biomechanics, and foot contact within the skate [2]. 

...
Last modified on

Posted by on in Programming

Reflecting on my hockey career, I always remembered the first few days of training camp.  Those were intense times.  I also recollect questioning my off-ice preparation during these times?  Why did my legs feel so heavy?  Did I not train hard enough?  Time and time again, I didn’t feel I had my “hockey legs” underneath me.  For someone who took so much pride in off-season preparation, why did I feel this way?  It took me many years to formulate a working hypothesis.  They say experience comes at the user’s expense, if only I knew then.

...
Last modified on
Follow Us