DSC Blog

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Archives
    Archives Contains a list of blog posts that were created previously.
Subscribe to this list via RSS Blog posts tagged in Anthony Donskov

Maximize “Free Time”:

...
Last modified on

In my opinion, it’s extremely important to understand the tools of the trade for various sports and their requisite performance underpinnings.  In the world of hockey, perhaps no tool is as important as a player’s choice in both skates and sticks.  The hockey skate consists of a hard-outer shell, a rigid toe box to withstand the velocity of flying pucks/sticks, a padded tongue, which may, or may not be manipulated for increased range of motion, an Achilles guard, heel counter and skate blade.  Players traditionally choose a skate that provides the most comfort while ensuring performance needs.  The balance of this so called “performance teeter-totter” typically resides in a personal choice between rigidity and range of motion (frontal plane stiffness and sagittal plane mobility).  For example, defensemen may choose a stiffer boot due to the fact that backward skating (C-Cut) does not have a swing phase only a stance (foot is on the ice the whole time).  In addition the trunk segmental angle (relative to the horizontal axis) in forward skating is significantly less than backward skating which indicates that players lean their bodies significantly forward during forward skating and not nearly as much in skating backwards [1].  More can be found here.  This choice has direct impact on biomechanics, and foot contact within the skate [2]. 

...
Last modified on

When it comes to programming for ice hockey we must ask ourselves…what qualities matter most in sport competition?  In other words, what qualities can we train off the ice, that make the most tangible differences on the ice?  What abilities make great players great?   In order to answer these questions, a good place to start is to look at some of the existing literature and attempt to see what correlates best with on-ice performance. 

...
Last modified on

Posted by on in Programming

Reflecting on my hockey career, I always remembered the first few days of training camp.  Those were intense times.  I also recollect questioning my off-ice preparation during these times?  Why did my legs feel so heavy?  Did I not train hard enough?  Time and time again, I didn’t feel I had my “hockey legs” underneath me.  For someone who took so much pride in off-season preparation, why did I feel this way?  It took me many years to formulate a working hypothesis.  They say experience comes at the user’s expense, if only I knew then.

...
Last modified on

Posted by on in Rehabilitation

The adductors are a series of long muscles that originate in the pubis (pelvis) and insert into the femur (leg).  In the sport of ice hockey, their function is to eccentrically decelerate hip extension during push off, while concentrically contracting during swing.  In other words, as the player pushes off, the adductors are lengthened.  As the player recovers his/her foot, the muscles are shortened.  Adductor strains are amongst the most common form of soft tissue injury experienced during competitive ice hockey.  Adductor strains are prevalent and accounted for 10% of all injuries (10 of 95) in elite Swedish ice hockey players [1], while others have reported that 43% of injuries (20-47) resulted from adductor strains in elite Finnish ice hockey [2].  In a study from Tyler et al. [3]   researchers found that National Hockey League players with adductor to abductor strength ratios of less than 80% were seventeen times more likely to experience an adductor strain.  In order to understand these implications, one must dive deeper into the biomechanics of the sport.

...
Last modified on

In my opinion, it’s extremely important to understand the tools of the trade for various sports and their requisite performance underpinnings.  In the world of hockey, perhaps no tool is as important as a player’s choice in both skates and sticks.  The hockey skate consists of a hard-outer shell, a rigid toe box to withstand the velocity of flying pucks/sticks, a padded tongue, which may, or may not be manipulated for increased range of motion, an Achilles guard, heel counter and skate blade. 

...
Last modified on

Posted by on in Coaching Development

 The purpose of this brief article is to explain our testing rationale for the hockey playing population at Donskov Strength and Conditioning.  Each respective practitioner has his/her own unique reality.  The goal is to allow one’s unique reality to dictate the model used for the planning of training, monitoring and testing.  All models are wrong, some are more useful than others.  When it comes to testing, I tend to ask myself the following questions: 1.) What test(s) are the most relevant for our hockey players?  What testing resources do I have at my disposal?  Do I have access to ice?  How long do I have to work with the athlete?  How much time, away from programming do I want to allot for testing?  Is testing necessary? 

...
Last modified on

The hockey stride has been described by bio-mechanists as biphasic in nature consisting of alternating periods of single leg and double leg support.  The single support phase corresponds to a period of glide, while the double support phase corresponds to the onset and preparation of propulsion (Marino, 1977).  Both stride rate and stride length have been investigated as a means of measuring/separating the skating velocities of high caliber and low caliber skaters. The purpose of this short blog is to investigate the research in order to answer the question:  which is more important, stride length, or stride rate? 

...
Last modified on

I’ve gotten several e-mails lately regarding our energy system work for our hockey players at Donskov Strength and Conditioning.  Typically, during the off-season, players start with four weight room touch points/week and slowly move to three as ice touches start to increase (more can be found here).  The plan is under-pinned by the high-low model famously pioneered by Charlie Francis. During a weekly micro-cycle, three high days are programed consisting of acceleration and sprint-based work, and two low days consisting of tempo runs.  This will change ever so slightly three weeks prior to training camp when alactic capacity and lactic power work will be programed in preparation for training camp. A four-week snapshot can be found below.

...
Last modified on

It’s that time of year once again.  A time when 100+ of the world’s best young hockey players come together to take place in the NHL combine.  Testing, interviews, meetings and assessments all strategically designed in order to further streamline managements draft day decision making.  The tricky part (aside from evaluating on ice skill and character) is deducing which off-ice tests best transfer into on ice performance. 

...
Last modified on
Follow Us